
Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments

is shown in Figure 1.

Figure 1 Forward declaration for the default handlers

These are the forward declarations, or function prototypes, for the three high-priority

exceptions(ResetISR, NmiSR and FaultISR), and a default Interrupt Service Routine (ISR) –

IntDefaultHandler for the other interrupt sources. Taking each of these in turn…

Line 32.

void ResetISR(void);

This is the highest priority exception (priority -3 in the tm4c123gh6pm datasheet, p103, Table

2-8, “Exception types”). In the event of power-up or a reset, ResetISR is invoked, by virtue of its

position at the start of the vector table (see later). The code listing for ResetISR is shown in

Figure 2:

Figure 2 ResetISR code listing

This is the first (although not last) instance of code whose precise function is not clear to me at

the moment. The __asm keyword invokes the inline assembler, indicating that the code in

brackets is written in assembly language rather than C. My attempts to research this would

seem to indicate that it has something to do with loading low-level code from the micro ROM

into SRAM (“bootloading”), however at that point my understanding ends - and even that might

be incorrect. Although I would like to know what this code actually does, for the moment I am

content to assume that it’s there for a good reason and is doing whatever it needs to do.

Line 33

static void NmiSR(void);

The non-maskable interrupt (NMI) is the next highest priority exception with a priority of -2,

and the second entry in the vector table. An NMI is generally an exception/interrupt which for

whatever reason should not be ignored or “masked”. The code for NmiSR is shown in Figure 3:

Figure 3 NmiSR code listing

As the comments indicate, this exception handler does nothing other than put the micro into an

infinite while loop. The programmer is free to write his or her NmiSR handler in place of the

existing default handler.

This is also the first instance of the static keyword, with static being an example of a C “storage

class”. I think the use of the keyword static in this function definition limits the function to being

callable only within the startup file and nowhere else. In other words, declaring the NmiSR

function as static hides the function from main or any code module. The only reason I can think

of that one might do this is to prevent the exception handler from being called, perhaps

accidentally, from another code module. Another point… if this is indeed true, does it mean that

the “non-static” exception handler ResetISR can be called from other modules…?

https://msdn.microsoft.com/en-us/library/btathf3f.aspx
https://msdn.microsoft.com/en-us/library/btathf3f.aspx

Line 34

static void FaultISR(void);

This is the exception handler which is called due to a “Hard Fault” where Hard Fault is defined

as “…an exception that occurs because of an error during exception processing, or because an

exception cannot be managed by any other exception mechanism.” The code for FaultISR is

shown in Figure 4

Figure 4 FaultISR code listing

FaultISR has a priority of -1 and is the lowest priority of the fixed-priority exception handlers,

third entry in the vector table. This code is very similar to that for the NmiSR handler, simply

putting the micro into an infinite loop. Again, the programmer is free to modify this code as

required, and the handler can only be “seen” from within the startup file.

Line 35

static void IntDefaultHandler(void);

Unlike ResetISR, NmiSR and FaultISR, IntDefaultHandler is a general default handler for the

remaining 86 exceptions and interrupts not already explicitly handled. Unless a given exception

or interrupt has its ISR overwritten by the programmer, it will simply invoke the

IntDefaultHandler code shown in Figure 5:

Figure 5 IntDefaultHandler code listing

Again, this is the familiar infinite-loop code which we have seen in the NmiSR and FaultISR

handlers. In typical usage, which would involve the micro taking action following on from one of

more exceptions or interrupts, the particular exception or interrupt would have its own

corresponding handler/ISR.

Line 43.

After the function prototypes for ResetISR, NmiSR, FaultISR and IntDefaultHandler we next

have this code (Figure 6):

Figure 6 _c_int100 declaration

This is a declaration or prototype for the function _c_int00, which is declared externally to the

startup code, as dictated by the extern keyword. The _c_int00 function is provided by the linker

and called by the ResetISR function described above This is part of the startup (or boot) routine

and is described in Section 3.3.1 of the CCS Help system:

“…The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It

performs all the steps necessary for a C/C++ program to initialize itself.

The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that

it sets up the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as

the entry point for C programs by default. The compiler's run-time-support library provides a

default implementation of _c_int00.”

This is consistent with what we have seen so far: _c_int00 is called by ResetISR, which is the

handler which runs after a hard reset. Further detailed information regarding _c_int00 seems a

little hard to come by, although the question is often asked. For the moment I am content that it

exists and does what it needs to do without further investigation.

https://e2e.ti.com/support/development_tools/compiler/f/343/t/252199

Line 50.

This is a declaration of an externally-defined symbolic constant, __STACK_TOP (Figure 7)

Figure 7 __STACK_TOP declaration

This constant is defined by the linker and is used in the definition of the vector table, beginning

at Line 66.

The remainder of the startup file defines the vector table and begins at Line 66. This code

section is quite lengthy, running to over 150 lines of code, however the general construction and

function of the vector table can be demonstrated through viewing the first 30 or so lines as

shown in Figure 8:

Figure 8 Vector table, partial code listing

The first four lines of this section are a little complex, and I’m not sure I fully understand what

they are doing, but here goes…

Line 66.

#pragma DATA_SECTION(g_pfnVectors, “.intvecs”)

#pragma is a pre-processor directive whose meaning is specific to the particular

implementation of compiler in use. In the case of CCS, #pragma DATA_SECTION is described in

the CSS Help file as follows:

“The DATA_SECTION pragma allocates space for the symbol in C, in a section named section

name.

The syntax of the pragma in C is:

#pragma DATA_SECTION (symbol, "section name")”

So Line 66 creates a section to be incorporated in the assembly process with the name “.intvecs”

from the array g_pfnVectors, which is defined in Lines 67 onwards.

Line 67.

void (* const g_pfnVectors[])(void) =

The square brackets [and] indicate that this is the definition of an array named g_pfnVectors.

An array is a contiguous group of data items of the same name and type. The asterisk * dictates

that this is also an array of “pointers”, or memory locations, to a group of functions. void and

(void) determine that those functions neither accept nor return any parameters. The const

keyword is a type qualifier which prevents the array from being modified.

So this definition creates an array “g_pfnVectors” of pointers to memory locations for an array of

functions which neither receive nor return any parameters. Those functions are the various

exception and interrupt handlers.

Line 69.

(void (*)(void))((uint32_t)&__STACK_TOP)

The exact working of this line is unclear to me at this time, but the purpose is clearly defined by

the accompanying comment. This code inserts the address of the stack (the “stack pointer”) in

the first vector table location. At power-up the micro loads the stack pointer from the first

location in the vector table and so, even before the reset handler ResetISR is invoked, the

address of the stack is defined. This is necessary because it is possible that, immediately after

ResetISR has run, the micro could be required to service an exception or interrupt handler. If

that were to happen, the stack would be needed in order to preserve the present state of the

micro. Had the stack not been defined, then the handler could not be run. Hence the need to

make the stack definition the very first thing that the micro does after reset.

Line 71+

The remainder of the vector table is defined from Lines 71 onwards. Each entry in the vector

table occupies its position in memory by virtue of its position in this list. So after the stack

pointer, the next entry is ResetISR, then NmiSR, and so on. This is consistent with Figure 2.6,

Vector Table in the TM4C123GH6PM data sheet (Figure 9).

The default entries in the vector table can be modified by simply replacing the name of the

default handler with one of a custom handler which may have been written to deal with a

particular eventuality. So for instance if the programmer has written a handler named

“GPIOPortAIntHandler” to handle the GPIO Port A interrupt (line 66 of Figure 8) then the

IntDefaultHandler entry on this line would simply be changed to GPIOPortAIntHandler. This is

exactly the procedure detailed in Lab 4 of the Workbook, which I will be examining shortly.

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/GSW-TM4C123G-LaunchPad/TM4C123G_LaunchPad_Workshop_Workbook.pdf

Figure 9 Vector table illustrated in the TM4C123GH6PM data sheet

